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Essential metals are crucial for the maintenance of cell homeostasis. Among the 23 elements that have
known physiological functions in humans, 12 are metals, including iron (Fe) and manganese (Mn). Nev-
ertheless, excessive exposure to these metals may lead to pathological conditions, including neurodegen-
eration. Similarly, exposure to metals that do not have known biological functions, such as mercury (Hg),
also present great health concerns. This review focuses on the neurodegenerative mechanisms and effects
of Fe, Mn and Hg. Oxidative stress (OS), particularly in mitochondria, is a common feature of Fe, Mn and
Hg toxicity. However, the primary molecular targets triggering OS are distinct. Free cationic iron is a
potent pro-oxidant and can initiate a set of reactions that form extremely reactive products, such as
OH�. Mn can oxidize dopamine (DA), generating reactive species and also affect mitochondrial function,
leading to accumulation of metabolites and culminating with OS. Cationic Hg forms have strong affinity
for nucleophiles, such as –SH and –SeH. Therefore, they target critical thiol- and selenol-molecules with
antioxidant properties. Finally, we address the main sources of exposure to these metals, their transport
mechanisms into the brain, and therapeutic modalities to mitigate their neurotoxic effects.

� 2012 Published by Elsevier Ltd.
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1. Introduction

Analogous to carbon-based molecules, metals are crucial for the
maintenance of cell homeostasis and preservation of life. They dis-
play important structural, regulatory and catalytic functions in dif-
ferent types of proteins, such as enzymes, receptors and
transporters (Phipps, 2002). Among the 23 elements with known
physiological functions, 12 are metals (sodium, magnesium, potas-
sium, calcium, vanadium, chromium, manganese (Mn), iron (Fe), co-
balt, copper, zinc, and molybdenum) (for a review, see Fraga,
2005). Nutritional deficiencies in specific trace-element metals
[Fe (Cook et al., 1994; Goodnough, 2012), zinc (Chasapis et al.,
2012) and Mn (Takeda, 2003)], as well as genetic disorders leading
to altered metal homeostasis (Kodama et al., 2012; Nandar and
Connor, 2011), culminate in human diseases. At the other spec-
trum, exposures to toxic levels of essential metals, such as Mn
(Racette et al., 2001), Fe (Schumann, 2001) and zinc (El Safty
et al., 2008), may lead to pathological conditions. Of particular
importance, oxidative stress and neurodegeneration have been re-
ported as consequences of toxic exposures to essential metals,
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along with dyshomeostasis in essential metal metabolism (Bow-
man et al., 2011; Brewer, 2012; Jaiser and Winston, 2010).

Xenobiotic metals with no physiological functions, such as alu-
minum, cadmium, lead and mercury, are present in measurable
concentrations in living organisms (Fraga, 2005). Such metals often
enter organisms by molecular mimicry, utilizing inherent trans-
porters for essential metals (Martinez-Finley et al., 2012). Environ-
mental, occupational or intentional exposures to xenobiotic metals
are frequently related to the development of toxicity and patholog-
ical conditions (Goyer, 1995; Valko et al., 2005). Notably, expo-
sures to toxic metals, such as mercury (Clarkson et al., 2003),
lead (Fox et al., 2012) and aluminum (Bondy, 2010), have been re-
lated to the development of neuropathological conditions.

Among the aforementioned essential and non-essential metals,
Fe, Mn and Hg have received considerable attention due to their
ability to induce oxidative damage and neurodegeneration. Nota-
bly, the etiologies of neurodegenerative disease such as Parkinson’s
disease (PD) and Alzheimer’s disease (AD) seem to be greatly
dependent on environmental factors or on environmental/genetic
interactions (Marras and Goldman, 2011). Of particular impor-
tance, specific metals have pro-oxidative properties and can per-
turb neurodegenerative genes by epigenetic events, leading to
altered gene expression and late-onset neurodegenerative diseases
(Kwok, 2010). Due to its ability to assume two oxidation states in
neurodegeneration: A focus on iron, manganese and mercury. Neurochem.
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biological systems [ferric (3+) and ferrous (2+)], Fe is an intrinsic
producer of reactive oxygen species (ROS), leading to neuronal oxi-
dative stress and neurodegeneration (Nunez et al., 2012). Fe dysho-
meostasis has been reported as an important event mediating the
physiopathogeny of PD and AD (Bartzokis et al., 2000; Jellinger,
1999). Analogous to Fe, Mn is also of concern due to its ability to
cause manganism, an extrapyramidal syndrome resembling idio-
pathic PD (Benedetto et al., 2009). In contrast to Fe and Mn, Hg is
a non-essential metal, whose neurotoxicological properties have
been reported several decades ago secondary to environmental
epidemic outbreaks (Bakir et al., 1973; Harada, 1978). Humans
are continuously exposed to environmental and occupational mer-
cury. Early-life exposures to this metal have been associated with
long-lasting and enduring neurobehavioral and neurochemical
deficits (Yorifuji et al., 2011). Moreover, in vitro experimental stud-
ies with neural cells have shown that mercury induces glial cell
reactivity (a hallmark of brain inflammation), increases the expres-
sion of the amyloid precursor protein and stimulates the formation
of insoluble beta-amyloid, which plays a crucial role in the patho-
genesis of AD (Monnet-Tschudi et al., 2006). This review provides a
synopsis on the chemical properties of Fe, manganese and mer-
cury, as well as on their biological and toxicological aspects, high-
lighting oxidative stress as a pivotal event in mediating their
toxicity. Particular emphasis is directed to their effects on the cen-
tral nervous system (CNS).
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2. Iron

2.1. Properties, chemical forms and human exposure

Iron (Fe) belongs to group VIII of periodic table and is one of the
most abundant elements in the earth’s crust (Weber et al., 2006)
and the most abundant of the transition metals in the periodic ta-
ble (Wachtershauser, 2007). Therefore, Fe availability to living
organism is high, which, added to its redox chemical properties
(Bleackley and Macgillivray, 2011), likely contributes to its selec-
tion as a central element in mediating energy-related processes
in living organisms (Turrens, 2003; Wachtershauser, 2007; Weber
et al., 2006). Fe can exist in different oxidation states, varying from
�2 to +6; however, within biological systems, it is bound to specific
metalloproteins and is found in the +2 or +3 oxidation states; such
change in its redox state is crucial to oxidative metabolism (Levi
and Rovida, 2009). However, subtle changes in the folding of Fe-
containing proteins can modify its coordination bond properties,
which changes the physiological and/or pathological role played
by the protein in cell biology (Patriarca et al., 2012). In the catalytic
cycle of cytochrome P450, which is an important class of enzymes
involved in the oxidative transformation and degradation of differ-
ent xenobiotics and endogenous substrates, Fe is postulated to as-
sume an Fe(IV)oxo (or ferryl) oxidation state (Rittle and Green,
2010). In contrast, the transport and storage of oxygen by hemo-
globin and myoglobin in vertebrates does not involve change in
the oxidation state of Fe2+ (Shikama, 2006).

In view of its widespread distribution in the earth’s crust, we
are constantly exposed to Fe mainly via food intake. Normally, Fe
absorption is physiologically regulated to avoid Fe toxicity (see bel-
low in Section 2.2.). Sporadic accidental, intentional suicidal or
occupational exposure to Fe may occur, but rarely has it been
linked to neurotoxicity (Andersen, 2004; Anderson, 1994; Carlsson
et al., 2008; Howland, 1996; Jang and Hoffman, 2011; Magdalan
et al., 2011; Siew et al., 2008; Sipahi et al., 2002; Tseng et al.,
2011). Within the context of neurodegeneration, there is no longi-
tudinal study supporting that a single episode of exposure to toxic
Fe levels results in delayed neurodegeneration. With respect to
neurodegeneration, limited epidemiological evidence indicates
Please cite this article in press as: Farina, M., et al. Metals, oxidative stress and
Int. (2012), http://dx.doi.org/10.1016/j.neuint.2012.12.006
that co-exposure to Fe and other toxic metals (Pb and Cu) present
a risk factor for PD (Gorell et al., 1997, 1999).

Biochemically, Fe2+ can be easily oxidized to Fe3+ and reduced
back to Fe2+ after interaction with different oxidizing or reducing
agents (Levi and Rovida, 2009). These changes in the oxidation
state of Fe are crucial for energy production by many living organ-
isms. In aerobic cells, Fe plays a vital role in the transport of elec-
trons derived from food oxidation to molecular oxygen (O2) located
at the end of respiratory chain (Levi and Rovida, 2009). Paradoxi-
cally, the redox properties of Fe determine its participation in
potentially cytotoxic reactions. In fact, Fe2+can catalyze the decom-
position of H2O2 with the formation of hydroxyl radical (OH�)
(Fig. 1), which is normally considered the most reactive and dam-
aging intermediate formed during cellular metabolism (Gutteridge,
1984; Halliwell, 1984, 1992; Halliwell and Turrens, 2003 – Fig. 1).
Fe3+ can also be reduced back to Fe2+ after reacting with superoxide
anion ðO��2 Þ (Haber and Weiss, 1932). Consequently, in a pro-oxi-
dant intracellular environment (particularly in mitochondria), the
formation of O��2 can stimulate Fe2+-mediated H2O2 decomposition
even in the presence of small catalytic amounts of free Fe (the cou-
pling of these two reactions are depicted in Fig. 1) (Halliwell, 1984,
1992; Halliwell and Gutteridge, 1984). Fe2+/Fe3+ are also involved
in the propagation of lipid peroxidation, by a complex mechanism
which has yet to be fully understood; however, it likely involves
the direct interaction of Fe with molecular oxygen and ROS, such
as organic peroxides (ROOH) formed in biological membranes
(Minotti and Aust, 1989, 1992; Tadolini and Hakim, 1996).

Importantly, mitochondrial dysfunction elicited by different
environmental or endogenous toxic agents (including Fe itself)
can either initiate or propagate Fe release from non-toxic sites
(i.e. Fe binding proteins), which may trigger and/or accelerate the
progression of degenerative diseases (Beal, 1998; Horowitz and
Greenamyre, 2010; Kumar et al., 2012; Mesquita et al., 2012;
Sebastiani and Pantopoulos, 2011; Zecca et al., 2004). In mitochon-
dria, the iron–sulfur clusters ([Fe–S]) found in complexes I and III
of the electron transport chain (ETC.) can be attacked by ROS,
releasing free Fe to participate in the Fenton Reaction and other
oxidative processes (Fig. 1). Thus, Fe is an important player in cell
toxicity and it can either initiate by itself a set of extremely oxida-
tive toxic reactions, or nourish oxidative stress provoked by xeno-
biotics or endogenous metabolites. Of particular importance, Fe-
mediated oxidative stress has been classically linked to apoptotic
cell death (Ott et al., 2007; Wallace, 1999) and more recently to
ferropoptosis, which represents a Fe-dependent form of non-apop-
totic cell death (Dixon et al., 2012).

2.2. Transport, metabolism and excretion

As detailed above, Fe is highly abundant in the environment and
its requirement for the proper human body functioning is normally
exceeded after ingestion of western diets. In order to avoid Fe over-
load, the absorption of dietary Fe is tightly regulated by a complex
and not yet fully understood interplay between Fe body burden
and gastrointestinal absorptive mechanisms (De Domenico et al.,
2008; Nunez, 2010). Fe transport into the enterocyte is adjusted
to fulfill the body requirements of this element. The fine regulation
of Fe absorption is extremely important because there are no cel-
lular regulated processes for Fe excretion (De Domenico et al.,
2008; Finberg, 2011; Fleming and Ponka, 2012; Mesquita et al.,
2012).

In the human intestine, Fe is absorbed by different (at least
three) molecular mechanisms into the enterocyte, depending upon
its chemical form and dietary source (Theil, 2011; West and Oates,
2008). There is a system that absorbs heme-Fe (normally derived
from myoglobin from red meat or blood hemoglobin), which was
formerly called heme carrier protein 1 (HCP1) due to its role in
neurodegeneration: A focus on iron, manganese and mercury. Neurochem.

http://dx.doi.org/10.1016/j.neuint.2012.12.006


209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

Fig. 1. Fe and mitochondria oxidative stress: Fenton reaction and hydroxyl radical formation are critical factors in Fe-induced mitochondrial toxicity; this type of reaction is
thought to be central in neurodegeneration. Fe can start mitochondrial oxidative stress via interaction with different reactive oxygen species (ROS). Free Fe can be released
from mitonchondrial Fe–sulfur clusters in complexes I and III upon interaction with ROS (in the figure it is shown the release of superoxide anion by these complexes and the
potential oxidation of Fe–S cluster by O��2 ; the oxidation of the Fe–sulfur clusters can increase the free Fe in the mitochondrial matrix. This can facilitate the operation of the
toxic Haber–Weiss and Fenton reactions, feeding a general pro-oxidant cycle). The redox pair Fe2+–Fe3+ can also directly stimulate lipid peroxidation, which can intensify the
oxidative stress and contribute to mitochondrial and cellular demise via mPTP formation. Free cationic Fe (regardless of the redox state) is the critical element for
neurotoxicity and it can be buffered by intramitochondrial ferritin (FtMt), which acts as an antioxidant protein in the mitochondrial matrix.
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heme-Fe transport and absorption (Shayeghi et al., 2005). Experi-
mental details on the modulation of heme-Fe absorption by these
heme-transporters are poorly understood (Theil, 2011; West and
Oates, 2008), but it is thought that the primary physiological role
of the heme-transporters involves folate transport (Le Blanc
et al., 2012). For this reason, the transporter involved in intestinal
heme-Fe absorption is now named proton-coupled folate transport
or PCFT/HCP1.

The literature also corroborates the existence of a clathrin-
dependent, receptor-mediated endocytosis mechanism for miner-
alized Fe3+ in ferritin found in legume seeds, such as soybean
(San Martin et al., 2008; Theil, 2011). There is a third system in-
volved in non-heme Fe2+ derived from salts or chelators from sup-
plements that is mediated by the divalent metal transporter 1
(DMT1), which works jointly with an Fe oxireductase (Dcytb, duo-
denal cytochrome b; (McKie et al., 2001). The Dcytb protein re-
duces Fe3+ to Fe2+ in the apical part of enterocytes (Fig. 2, left),
which allows absorption via DMT1. DMT1 mRNA transcripts have
been found in a variety of tissues, indicating a universal role for
this transport in Fe distribution in mammals (Mims and Prchal,
2005).

The export of absorbed Fe from enterocyte to the plasma is
mediated by ferroportin (FPT), which is regulated by hepcidin
and plays a crucial role in regulating plasma Fe levels (Nemeth
and Ganz, 2006). In plasma, Fe2+ is oxidized to Fe3+ by ceruloplas-
min or hephaestin and then binds to transferrin, which can distrib-
ute Fe to cells throughout the body. Fe3+-transferrin complex can
interact with transferrin receptor 1, resulting in endocytosis and
uptake of the transferrin-bound metal. Fe can then be transported
to mitochondria and incorporated in heme prosthetic groups or
into Fe–sulfur clusters (Finberg, 2011; Fleming and Ponka, 2012;
Wang and Pantopoulos, 2011). Intramitochondrial free Fe can also
be buffered by a specific mitochondrial ferritin (FtMt; Fig. 1), which
has an important physiological role as an antioxidant (Campanella
et al., 2009; Santambrogio et al., 2007) (Fig. 1).

The central role of mitochondria in heme biosynthesis high-
lights the importance of this organelle in Fe fate and metabolism.
Please cite this article in press as: Farina, M., et al. Metals, oxidative stress and
Int. (2012), http://dx.doi.org/10.1016/j.neuint.2012.12.006
Physiologically, mitochondria have adapted to cope with Fe and
to circumvent the potential toxicity of free cationic Fe forms (Levi
and Rovida, 2009; Ott et al., 2007; Richardson et al., 2010). Since
mitochondria are also important intracellular sites for ROS produc-
tion (i.e. O��2 and H2O2) (Halliwell, 1992; Ott et al., 2007), the con-
tinued presence of Fe inside the mitochondrial matrix renders
these organelles susceptible to damage by extremely reactive
intermediates that can be formed after interaction of ROS with
transitory free Fe2+ and Fe3+ (see Fig. 1). In effect, mitochondrial
Fe seems to play a fundamental role in neurodegeneration associ-
ated with several brain pathologies (Beal, 1998; Galaris and Panto-
poulos, 2008; Horowitz and Greenamyre, 2010).

If the body burden of Fe is adequate and there is no requirement
for this micronutrient, its absorption is negatively modulated by
different mechanisms. As previously mentioned, the peptide hepci-
din, which is synthesized as pro-hormone in the hepatocytes, is re-
leased into the blood in response to Fe intake. Hepcidin inhibits the
intestinal absorption of Fe and its export from enterocytes (and
also that derived from heme from red blood cells phagocytized
by macrophages in the reticuloendothelial system). Hepcidin binds
to ferroportin and stimulates its phosphorylation and degradation,
modulating in this way the body burden of Fe and its availability
for heme synthesis and erythropoiesis (Finberg, 2011; Nemeth
and Ganz, 2006; Sebastiani and Pantopoulos, 2011; Wang and Pan-
topoulos, 2011). The absorption, distribution and storage of Fe are
also regulated by the concerted interaction of Fe regulatory pro-
teins (IRPs) and Fe responsive elements (IREs). IREs are located in
the untranslated regions of mRNAs encoding protein involved in
Fe handling and can interact with IRPs (Wang and Pantopoulos,
2011). For instance, the synthesis of Fe trafficking and storage pro-
teins (DMT1, transferrin receptor and ferritin, etc.) is finely coordi-
nated by IRPs and IREs in order to increase or decrease Fe
absorption, depending upon the physiological requirements for
Fe (Theil, 2011; Wang and Pantopoulos, 2011).

One important (but not fully explored) aspect on Fe homeosta-
sis is how dietary or genetic Fe loading can modify the metabolism
of proteins involved in Fe absorption, trafficking and storage in
neurodegeneration: A focus on iron, manganese and mercury. Neurochem.
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Fig. 2. Mechanisms of intestinal Fe uptake. Fe can be absorbed in the enterocyte via distinct mechanisms: (1) Divalent Metal Transporter 1 (DMT1) and duodenal cytochrome
b (Dcytb) Fe oxireductase system, which is involved in the absorption of free divalent Fe (Fe2+); (2) HCP1/PCFT or heme carrier protein 1 (HCP1)/proton-coupled folate
transporter, which is involved in the absorption of heme–Fe and folate, and (3) a clathrin-dependent, receptor-mediated system that is involved in the absorption of
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plasma, Fe2+ is oxidized by ceruloplasmin or hephaestin and binds to transferrin. Tranferrin can distribute Fe to all tissues of the body, including brain where Fe overloading
contributes to neurodegeneration.
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brain tissues. Clarifying such aspects would contribute on under-
standing how Fe participates in neurodegenerative processes; such
knowledge may improve treatment options in a range of neurode-
generative disorders (Johnstone and Milward, 2010a,b).

2.3. Fe and neurodegeneration

As discussed above, free cationic Fe can be extremely toxic via
disruption of mitochondrial function, and theoretically, Fe2+

M Fe3+

redox changes can be coupled with formation of extremely reactive
species, such as hydroxyl radical (OH�). This molecule is highly
reactive and its free existence is limited to its diffusion coefficient.
In fact, OH� is expected to be found only close to its site of forma-
tion and in close proximity to Fe ions (Gutteridge, 1984). The for-
mation of OH� can damage different biomolecules and start a
vicious cycle of cellular damage (Fig. 1). Furthermore, the redox
pair Fe2+/Fe3+serves as an in vivo initiator of cytotoxic reactions,
particularly, lipid peroxidation (Ryan and Aust, 1992; Welch
et al., 2002).

With respect to neurodegeneration, a vast amount of literature
data indicates that Fe is an important etiologic factor associated
with oxidative stress induction and cell demise in pathological sit-
uations (Johnstone and Milward, 2010b; Jomova and Valko, 2011;
Mesquita et al., 2012; Wu et al., 2012). Recently, it has been pro-
posed that Fe could be a primary and unifying factor involved in
Please cite this article in press as: Farina, M., et al. Metals, oxidative stress and
Int. (2012), http://dx.doi.org/10.1016/j.neuint.2012.12.006
the progression of different chronic neurodegenerative diseases,
such as PD, Alzheimer’s and Huntington’s disease (Kell, 2010). In
fact, there are numerous observations to support an early role for
brain Fe overloading in the progression of neurodegenerative dis-
eases (Rosas et al., 2012). However, temporal aspects on Fe-medi-
ated initiation or progression of neuropathological conditions, as
well as the exact role played by activation of Fe-triggered toxico-
logical pathway(s), remain unknown (Andersen, 2004; Johnstone
and Milward, 2010b; Kumar et al., 2012).

It is noteworthy that Fe deposition has been observed only in
specific brain regions in patients with chronic degenerative diseases
(Kell, 2010; Kumar et al., 2012; Rosas et al., 2012; Sian-Hulsmann
et al., 2011). The basal ganglia represent a preferential site of Fe
deposition in neurodegenerative diseases (Akatsu et al., 2012; Berg
et al., 2001; Gregory and Hayflick, 2011). A similar phenomenon is
also observed in a wide range of genetic diseases collectively named
neurodegeneration with brain Fe accumulation (NBIA, such as
Friedreich ataxia, pantothenate kinase 2-associated neurodegener-
ation, PLA2G6-associated neurodegeneration, FA2H-associated
neurodegeneration, Kufor-Rakeb disease, aceruloplasminemia, and
neuroferritinopathy (Gregory et al., 2009; McNeill et al., 2008;
Schipper, 2012). These genetic diseases are characterized by Fe
accumulation in basal ganglia and associated with mutations in pro-
teins involved in Fe traffic or metabolism (Prohaska et al., 2012).
However, as stated for the case of chronic Fe-associated
neurodegeneration: A focus on iron, manganese and mercury. Neurochem.
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degenerative brain diseases, little is known about the mechanisms
that lead to brain Fe accumulation (Prohaska et al., 2012). Neverthe-
less, the study and understanding of the neuropathological modifi-
cations associated with the wide spectrum of NBIA diseases have
indicated the existence of clinical, morphological and molecular fea-
tures similar to those seen in chronic neurodegenerative diseases
such as PD, Huntington’s and Alzheimer’s disease (Berg et al.,
2001; Schneider et al., 2012).

As briefly noted above, the temporal relationship between Fe
deposition and neurodegeneration has yet to be clearly estab-
lished. Thus, in some diseases, Fe deposition can be the conse-
quence and not the cause of neurodegeneration. Here we have a
gap in knowledge, which indicates the need of mechanistic studies
to determine the primary, secondary and tertiary factors involved
in the initiation and progression of neurodegeneration in different
Fe-associated brain pathologies. Most importantly, from a thera-
peutic point of view, the identification of a potential non-returning
point of Fe neurotoxicity would be of great value in developing
therapeutic and other interventional procedures that could delay
the attainment of this point of cell demise. In short, although Fe
(as Fe2+) is a central factor in Fenton reaction and, consequently,
in OH� production, which is expected to damage biomolecules
and contribute to neurodegeneration, there is no a direct or even
an indirect method to accurately follow the chronology of Fenton’s
reaction in a representative living model system of neurodegener-
ation. The assertion for the central role of Fe2+–Fe3+ (either as par-
ticipants in Fenton reaction or as direct inductors of lipid
peroxidation) in neurodegeneration is based largely on reactivity
parameters derived from classical indirect procedures that are
used to determine their occurrence in chemical pure systems.
Thus, experimental in vitro and in vivo models designed to deter-
mine with precision the temporal role of Fenton reaction in neuro-
degeneration are highly needed. Furthermore, the role played by
Fenton chemistry in the activation or inhibition of specific molec-
ular and subcellular pathways that participate in Fe neurotoxicity
is not fully understood. The ability of Fe (Fe2+:Fe3+) to initiate
and propagate membrane lipid peroxidation adds an additional
factor to these complex issues. In fact, we have no experimental
indication on the proportional contribution of these specific reac-
tions (Haber and Weiss, 1932; Halliwell and Gutteridge, 1984)
either in simple or complex chemico-biological system(s).

2.3.1. Acute brain Fe overload
High amount of Fe can be acutely released in specific brain re-

gions after local hemorrhage caused by brain trauma or after stroke
episodes resulting from different etiologies (Carbonell and Rama,
2007; Halliwell, 1992; Raz et al., 2011; Wagner et al., 2003). After
the hemorrhagic episode, erythrocytes are released inside the brain
parenchyma, followed by hemolysis. Hemoglobin, heme and Fe are
then released in the extracellular space, causing local Fe overload-
ing (Halliwell, 1992). Although little is known about the fate of
heme released from hemoglobin after brain hemorrhage, a recent
study has indicated that hemoglobin and heme uptake was higher
in neurons than in glial cells (Lara et al., 2009). Consequently, heme
uptake by neurons after brain trauma or stroke contributes to Fe-
associated neurodegeneration (Aronowski and Zhao, 2011).

2.3.2. Fe and cell death
At the molecular level, the primary toxicity of free Fe is associ-

ated with its redox properties, which can culminate in the produc-
tion of ROS that will initiate a cascade of cytotoxic events. For
instance, OH� can oxidize a variety of biomolecules, including
thiol-containing proteins, and in the case of mitochondria this
can lead to the formation of mitochondrial permeability transition
pore (mPTP). mPTP formation will collapse membrane mitochon-
drial potential, increase intramitochondrial Ca2+, decrease ATP syn-
Please cite this article in press as: Farina, M., et al. Metals, oxidative stress and
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thesis and in extreme cases result in cell death (Halestrap, 2009).
The formation of mPTP can also trigger less dramatic changes in
mitochondrial metabolism that can be associated with delayed
apoptosis and/or necrosis (Kinnally et al., 2011). However, our
knowledge on the role of Fe-induced oxidative stress on the activa-
tion of (a) particular cascade(s) of cellular or mitochondrial events
that result in cell death is superficial. Recently, it was demon-
strated that Fe is a key element involved in mitochondrial-induced
oxidative stress and cell death (Dixon et al., 2012). This form of cell
death, which was named ferroptosis, is morphologically, biochem-
ically and genetically distinct from apoptosis, necrosis or autoph-
agy, and can be activated by glutamate (Dixon et al., 2012).
Accordingly, Fe can contribute to neurodegeneration by activating
different cell death pathways.

2.4. Antidotal strategies

Therapeutic approaches to treat neurodegeneration associated
with Fe overload is limited and involve the use of chelating agents
(Heli et al., 2011; Jomova and Valko, 2011; Miyajima et al., 1997;
Molina-Holgado et al., 2007; Selim et al., 2011). However, treatment
with these agents (including desferoxamine) may cause toxicity
(Gassen and Youdim, 1997; Heli et al., 2011). Natural products, such
as catechin and other polyphenols have been indicated as potential
therapeutic agents against Fe toxicity, because of their simulta-
neous antioxidant and Fe-chelating properties (Mandel and You-
dim, 2004; Reznichenko et al., 2006). The therapeutic efficacy of
polyphenol compounds found in natural preparations used in folk
medicine can be linked to these two general properties (Fibach
and Rachmilewitz, 2010; Perron and Brumaghim, 2009).

3. Manganese

3.1. Properties and chemical forms and human exposure

Manganese (Mn) is one of the most abundant naturally occurring
elements in the earth’s crust; it does not occur naturally in a pure
state. Oxides, carbonates and silicates are the most important Mn-
containing minerals. Mn exists in various chemical forms, oxidation
states (Mn2+, Mn3+, Mn4+, Mn6+, Mn7+), salts (sulfate, chloride and
gluconate) and chelates (aspartate, fumarate, succinate). More than
25 million tons are mined yearly, representing 5 million tons of the
metal (Emsley, 2001). The versatile chemical properties of Mn have
enabled its industrial usage in glass and ceramics, adhesives, weld-
ing, paint, gasoline anti-knock additives (methylcyclopentadienyl
manganese tricarbonyl, MMT), just to name a few. Manganese diox-
ide is also used as a catalyst (Su et al., 2012). Mn is used to decolorize
glass and make violet colored glass. Potassium permanganate is a
potent oxidizer and used as a disinfectant. Other compounds with
commercial applications are Mn oxide (MnO) and Mn carbonate
(MnCO3), which have been present in fertilizers and ceramics, as
well as in materials for making other Mn compounds. Mn is a para-
magnetic metal, meaning that it has an unpaired electron in the out-
er shell and that it can be detected with MRI, Positron emission
tomography (PET) and single-photon emission computed tomogra-
phy (SPECT) (Aschner et al., 2007a; Inoue et al., 2011). These tech-
niques allow for the tracking of Mn dynamics repeatedly in the
same subject in vivo (Aschner et al., 2007a; Newland, 1999). Mn
can also chemically interact with fluorophore fura-2, by quenching
it and increasing its fluorescence, representing a new methodolog-
ical approach for in vitro kinetic studies (Kwakye et al., 2011).

There are several sources of exposure to Mn, as follows:

3.1.1. Dietary exposure
The primary source of Mn for the general human population is

diet. Adult dietary intake of Mn has been estimated to range from
neurodegeneration: A focus on iron, manganese and mercury. Neurochem.
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0.9 to 10 mg Mn/day (ATSDR, 2000; Finley and Davis, 1999). Foods
with Mn levels in excess of 30 mg/kg include grains, rice and nuts.
A cup of tea contains as much as 0.4–1.3 mg Mn (ATSDR, 2000). An-
other important source of Mn intake is the consumption of Mn-
containing dietary supplements; tablets may contain 5–20 mg of
Mn (NAS, 2001). Water concentrations of Mn typically range from
1 to 100 lg/L, with most values below 10 lg/L. Nevertheless, in
some countries, such as Sweden, Mn concentrations in drinking
water reach an average of 150 lg/L (Ljung and Vahter, 2007). Such
elevated values pose the greatest potential risk to infants, in partic-
ular, as they have a higher retention of Mn and a more sensitive
CNS than adults (Wasserman et al., 2006). Mn intake in milk is
low; however, in formula-fed infants is much higher than that ob-
served in their breast milk-fed counterparts, since levels of Mn in
infant formulas may be substantially higher than those found in
human milk (Krachler et al., 2000).
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3.1.2. Airborne exposure
Inorganic Mn compounds are not volatile; however, they can

exists as fumes, aerosols or suspended particulate matter (ATSDR,
2000). Atmospheric Mn derives from both anthropogenic and nat-
ural sources. Industries associated to Mn emissions include ferroal-
loy production, iron and steel foundries, metal fumes from
welding, battery production and power plant and coke oven com-
bustion (Aschner et al., 2005). Mn is also found in methylcyclopen-
tadienyl manganese tricarbonyl (MMT), a fuel additive used in
some unleaded gasoline (Davis, 1998). The use of this additive
has been subject of much debate by regulatory agencies (Davis
et al., 1998; Kaiser, 2003).
545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566
3.1.3. Parenteral nutrition
Due to Mn essentiality, parenteral nutrition (PN) generally con-

tains significant amounts of this trace element. However, many
products contain Mn as ubiquitous contaminant (Hardy, 2009).
There are several case reports of PN users that developed Mn
neurotoxicity and showed high MRI intensity in the brain (Hardy,
2009). In PN patients, the normal intestinal regulatory mechanism
is bypassed and the amount of Mn delivered via the intravenous
route is 100% bioavailable. In addition, the normal pathway of
elimination via the hepatobiliary system frequently is impaired be-
cause of PN-associated biliary stasis and obstructive jaundice. This
may be especially important for parenterally fed infants who pass
little or no stool and often show evidence of hepatic dysfunction
and cholestasis (Aschner and Aschner, 2005). It also predisposes
long-term PN patients to tissue accumulation and/or brain deposi-
tion of Mn, resulting in neurologic symptoms. However, a clear
cause–effect relationship between PN-associated cholestasis and
neurotoxicity has not been established and data about the tempo-
ral relationship between the dose and duration of Mn supplemen-
tation and increased Mn levels have been contradictory (Siepler
et al., 2003).
567

568

569

570

571

572

573

574

575

576

577

578

579

580
3.1.4. Mn-containing drugs
A relatively new form of presumed Mn poisoning has been re-

ported in drug-addicted subjects from Eastern Europe and the Bal-
tic states who have intravenously injected self-prepared
methcathinone hydrochloride (ephedrone), which is synthesized
from pseudoephedrine hydrochloride using potassium permanga-
nate as the oxidant (Zhingel et al., 1991). Ephedrone is relatively
easily accessible for abuse. Its users develop an extrapyramidal
syndrome and it is not known if this is caused by methcathinone
itself, by side-ingredients (Mn), or both (Sikk et al., 2011). Neuro-
imaging studies with MRI have demonstrated Mn accumulation
in the basal ganglia of these addicts (Sikk et al., 2010).
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3.2. Transport, metabolism and excretion

As previously mentioned, the major source of Mn in humans is
via dietary ingestion (Au et al., 2009). Approximately 3–5% of in-
gested Mn is absorbed, and the rest is excreted in the feces. Its up-
take is tightly regulated and any excess of ingested Mn is readily
excreted via the bile. In contrast, both pulmonary uptake and par-
ticulate transport via the olfactory bulb can lead to Mn deposition
in the striatum and cerebellum and inflammation of the nasal epi-
thelium (Roth, 2009).

Mn ions (Mn3+) bind to the same location as ferric ions (Fe3+) on
the large glycoprotein molecule mucin, which is known to stabilize
the ions preventing precipitation in the lumen of the gastro intes-
tinal tract (Powell et al., 1999). Both metals are known to have an
affinity for the intercellular metal binding molecule mobilferrin
(Conrad et al., 1992). Absorption of metal ions into enterocytes is
known to take place via transmembrane transporters. Gunshin
et al. (1997) cloned the Divalent Metal Transporter1 (DMT1) from
proximal small bowel, which avidly binds Fe2+ ions, but also has an
affinity for Mn2+ and other cations. In this regard, it is important to
mention that dietary Fe3+ is firstly reduced to Fe2+ by ascorbate or
surface ferrireductases before being transported via DMT1 into the
enterocytes (Mackenzie and Garrick, 2005). During Fe deficiency
the number of transporters in enterocyte membranes is increased
in order to maximize Fe absorption (Gunshin et al., 1997). This will
inevitably result in increased Mn absorption, particularly in the ab-
sence of Fe. Fe has a strong influence on Mn homeostasis as both
metals share the transporter, transferrin (Tf), binding and uptake
via the Tf transporter and the divalent metal transporter, DMT1/
NRAMP2. In rodents, Fe deficiency is associated with increased
Mn absorption across the gastrointestinal tract, as well increased
Mn brain deposition (Fitsanakis et al., 2008; Freeland-Graves and
Lin, 1991; Garcia et al., 2007).

The exact identity of the carrier(s) involved in Mn transport into
the brain is still controversial. In general, it is believed that at nor-
mal plasma concentrations, Mn enters into the CNS primarily
across the capillary endothelium, whereas at high plasma concen-
trations, transport across the choroid plexus predominates (Mur-
phy et al., 1991). How, and in what chemical form Mn is
transported across the blood–brain barrier (BBB) has been ad-
dressed in a series of studies. Mn is absorbed in the GI tract as
Mn2+, is oxidized to Mn3+ by liver and plasma ceruloplasmin and
transported through the blood by transferrin (Tf) (Aschner and
Gannon, 1994; Takeda et al., 1995). Although Tf-dependent Mn
transport across the BBB has been documented (Aschner and Gan-
non, 1994), the majority of BBB transport occurs via the DMT1.

A critical regulator of brain Mn levels is the divalent metal
transporter, DMT-1/NRAMP-2. DMT-1 (also referred to as the
DCT, or divalent cation transporter) is known to shuttle both Mn
and Fe ions in the (+2) valence, as well as other divalent metals.
Disruption of the orthologous DMT-1 gene in the rat or mouse re-
sults in significantly lower tissue levels and uptake of Mn and Fe in
the brain (Chua and Morgan, 1997; Fleming et al., 1998). Notably, a
recent study (Salazar et al., 2008) has shown that DMT1 contrib-
utes to neurodegeneration in an experimental model of PD. These
authors observed an increased expression of a specific DMT1 iso-
form (DMT1/Nramp2/Slc11a2) in the substantia nigra of Parkin-
son’s disease patients. Moreover, the authors also showed that
the administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyri-
dine (MPTP, a dopaminergic toxin used in experimental models
of Parkinson’s disease) increased DMT1 expression in the ventral
mesencephalon of mice, which was concomitant with iron accu-
mulation, oxidative stress, and dopaminergic cell loss (Salazar
et al., 2008).

Additional brain Mn transporters include the Mn-citrate trans-
porters (MCT) and the Mn-bicarbonate symporters (Crossgrove
neurodegeneration: A focus on iron, manganese and mercury. Neurochem.
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et al., 2003). However, the relevance of these proteins to Mn trans-
port in vivo is not completed understood. The Mn-bicarbonate
symporters, ZIP-8 and ZIP-14, have been identified as members
of the solute carrier-39, and are expressed on brain capillaries
(He et al., 2006). These symporters utilize a HCO3

� gradient as
the driving force for Mn uptake across the plasma membrane.

Other possible mechanisms for Mn transport include the dopa-
mine transporter (DAT). It is believed that DAT facilitates Mn trans-
port into dopaminergic (DAergic) striatal neurons and that Mn
accumulates in the globus pallidus via axonal transport (Anderson
et al., 2007). As a result, blockage of the DAT in the striatum should
attenuate Mn accumulation in striatal neurons and cause de-
creased Mn concentrations in the globus pallidus (Anderson et al.,
2007). Finally, Mn transport via voltage regulated channels (Luca-
ciu et al., 1997), store-operated channels (Riccio et al., 2002), iono-
tropic glutamate receptor channels (Kannurpatti et al., 2000) (all
Ca2+ channels) and choline transporters (Lockman et al., 2001)
has also been described.

3.3. Mn and neurodegeneration

It has been known for more than 150 years that Mn can be a
neurotoxic agent; its toxicity has been predominantly observed
in occupational settings, following the accidental ingestion of large
quantities or after chronic inhalation of high levels (Mergler et al.,
1994). The brain is particularly susceptible to excess of this metal,
but the mechanisms of toxicity are poorly understood. In humans,
it has been postulated that there is a spectrum of neurobehavioral
and neurophysiological effects associated with Mn toxicity, includ-
ing subclinical and clinical symptoms (Mergler et al., 1994).

Mn neurotoxicity, or locura manganica, also referred to as man-
ganism, is a neurologic disorder characterized by psychological and
neurological abnormalities, which resemble Parkinson’s disease
(Barbeau, 1984; Huang et al., 1989; Mena et al., 1967). Mn also
damages brain areas distinct from those that are affected in PD
(Calne et al., 1994; Olanow, 2004). The similarities between the
clinical manifestations of PD and manganism include the presence
of generalized bradykinesia and widespread rigidity and a charac-
teristic ‘‘cock-walk’’ (Calne et al., 1994). There are also differences
with respect to treatment response – although there may be an ini-
tial response to levodopa, the primary treatment option for PD,
there is typically a failure to achieve a sustained therapeutic re-
sponse in patients with manganism (Aschner et al., 2009; Calne
et al., 1994). The similarities between the two disorders can be par-
tially explained by the fact that the basal ganglia accumulate most
of the excess Mn compared with other brain regions, and dysfunc-
tion in the basal ganglia is also involved in PD (Dobson et al., 2004).

Mn has also been linked to the etiology of other neurodegener-
ative diseases, such as Huntington’s disease, Alzheimer’s disease,
amyotrophic lateral sclerosis, as well reviewed by other authors
(Aschner et al., 2009; Benedetto et al., 2009; Bowman et al.,
2011; Zatta et al., 2003). Mechanisms mediating Mn-induced
neurotoxicity, as well as their relationship with neurodegenerative
diseases, are detailed as follows.

3.3.1. Dopamine oxidation
DA is one of the most abundant catecholamine within the brain.

Chronic exposure to Mn has been shown to cause the degeneration
of nigrostriatal DAergic neurons (Barbeau, 1984). Postnatal Mn
exposure causes a decline in pre-synaptic DAergic functioning, re-
duced DA transporter expression and DA uptake in the striatum,
and a long-lasting decrease in DA efflux (Huang et al., 2003;
McDougall et al., 2008). In adult animal models, exposure to Mn
inhibits DA neurotransmission and depletes striatal DA (Barceloux,
1999; Calne et al., 1994; Chen et al., 2006; Pal et al., 1999), thereby
resulting in motor deficits (Guilarte, 2010).
Please cite this article in press as: Farina, M., et al. Metals, oxidative stress and
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Although it is generally accepted that free radicals play a key
role in mediating Mn-induced DAergic neurodegeneration (Erikson
et al., 2007), the precise mechanism of Mn-induced neurotoxicity
remains unknown. One hypothesis invokes the ability of Mn to en-
hance ROS generation via quinone formation (Fig. 3) (Graham,
1978). Indeed, the Mn-catalyzed autoxidation of DA involves redox
cycling of Mn2+ and Mn3+ in a reaction that generates ROS and DA-
o-quinone, thereby leading to oxidative damage (Donaldson et al.,
1982; Reaney and Smith, 2005). Thus, elevated rate of autoxidation
of cytoplasmic DA induced by Mn may contribute to DAergic cell
death secondary to the formation of cytotoxic quinones and ROS
(Graham, 1978).

Mn-induced DA oxidation is a complex process involving sev-
eral steps in which semi-quinone, aminochrome intermediates, L-
cysteine or copper (Cu) and NADH are implicated (Segura-Aguilar,
1996; Segura-Aguilar and Lind, 1989). Mechanisms underlying
semi-quinone and aminochrome-induced damage in the Mn-in-
duced neurodegenerative process likely include: (i) NADH or
NADPH depletion; (ii) inactivation of enzymes by oxidizing thiol
groups or essential amino acids; (iii) formation of ROS and (iv) lipid
peroxidation. It is noteworthy that neither Mn2+ nor Mn3+ can gen-
erate hydroxyl radicals from hydrogen peroxide and/or superoxide
via Fenton-type or Haber–Weiss-type reactions, while Mn2+ can
scavenge and detoxify superoxide radicals (Archibald and Tyree,
1987; Donaldson et al., 1982).

3.3.2. Mitochondrial dysfunction
Intracellular Mn preferentially accumulates in the mitochon-

dria, mainly as Mn2+ via the Ca2+ uniporter (Gavin et al., 1992;
Gunter and Pfeiffer, 1990). Elevated intramitochondrial Mn inter-
feres with oxidative respiration, leading to excessive production
of ROS and consequently mitochondrial dysfunction (Gavin et al.,
1992; Gunter and Pfeiffer, 1990). The ability of Mn to enhance oxi-
dative stress is due to the transition of its oxidative state +2 to +3,
which increases its pro-oxidant capacity (HaMai et al., 2001; Rea-
ney and Smith, 2005). Superoxide produced in the mitochondrial
electron transport chain (ETC.) may catalyze this transition
through a set of reactions similar to those mediated by SOD and
thus lead to the increased oxidant capacity of the metal (Archibald
and Tyree, 1987; Gunter and Pfeiffer, 1990). Superoxide radical can
also form hydrogen peroxide (H2O2) by superoxide dismutase. This
reaction is catalyzed by manganese (Mn)-superoxide dismutase
(Mn-SOD) in the mitochondrial matrix. It also needs to be consid-
ered that Mn3+ has greater pro-oxidant potential than Mn2+, and its
production in the mitochondria may also accentuate oxidative
damage (Ali et al., 1995).

Mn can directly impair mitochondrial function by inhibiting the
ETC. (Gavin et al., 1992), resulting in reduced ATP production, in-
creased leakage of electrons and increased O��2 production (Scholte,
1988). Although Mn3+ is more potent at inhibiting complex I
(Archibald and Tyree, 1987), Mn2+ is the predominant species
within cells and is largely bound to ATP (Gunter and Pfeiffer, 1990).

Mn interferes with calcium (Ca2+) homeostasis in mitochondria
by inhibiting its efflux (Gavin et al., 1990; Spadoni et al., 2000).
Oxidative stress generated by high Mn concentrations leads to
the induction and opening of the mitochondrial permeability pore
(MPT) pore, a Ca2+-dependent process, resulting in increased solu-
bility to protons, ions and solutes, loss of the mitochondrial inner
membrane potential (Dwm), impairment of oxidative phosphory-
lation and ATP synthesis and mitochondrial swelling (Gavin
et al., 1990; Yin et al., 2008a; Zoratti and Szabo, 1995).

3.3.3. Astrocytosis
Astrocytes make up approximately 50% of the human brain vol-

ume (Chen et al., 2006) and assume many critical pathophysiolog-
ical roles essential for normal neuronal activity, including
neurodegeneration: A focus on iron, manganese and mercury. Neurochem.
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glutamate uptake, glutamine release, K+ and H+ buffering, volume
regulation and membrane–membrane mediated trophic cell sig-
naling (Aschner and Gannon, 1994; Aschner et al., 2007a; Chen
et al., 2006). Unlike neurons, astrocytes concentrate Mn to levels
at least 50-fold higher than the culture media, thus functioning
as the major homeostatic regulators and storage site for Mn (Asch-
ner et al., 2009, 2007a; Aschner and Gannon, 1994). Primate mod-
els of Mn toxicity have shown astrocytic pathological alterations
(Alzheimer type II) (Olanow et al., 1996; Pentschew et al., 1963;
Yamada et al., 1986), and exposure of cultured astrocytes to patho-
physiologically relevant concentrations of Mn leads to a concentra-
tion- and time-dependent cell swelling, which appears to be a
consequence of oxidative stress and changes in MPT (Rao and
Norenberg, 2004). Increased accumulation of Mn in astrocytes
has also been shown to alter glutamate homeostasis and elicit
excitatory neurotoxicity (Erikson and Aschner, 2003). Thus, Mn de-
creases astrocytic glutamate uptake (Hazell and Butterworth,
1999; Hazell and Norenberg, 1998) and reduces the expression of
the astrocytic glutamate:aspartate transporter (GLAST) (Erikson
and Aschner, 2002), leading to increased extracellular glutamate
levels, and neuronal excitability.

Mn has been implicated in the impairment of the glutamate-
glutamine cycling, by deregulation of their turnover in astrocytes
Please cite this article in press as: Farina, M., et al. Metals, oxidative stress and
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(Sidoryk-Wegrzynowicz et al., 2009). The functioning of this cycle
is critical for normal brain function, once glutamine is the precur-
sor of glutamate and GABA as well (Sidoryk-Wegrzynowicz et al.,
2012). Expression of glutamine transporters was downregulated
in Mn-exposed cultured astrocytes (Sidoryk-Wegrzynowicz
et al., 2009), thus reducing glutamine uptake. As a consequence
of this deregulation in glutamine transport, there is impairment
in glutamine shuttling between neurons and astrocytes, altering
the synthesis of glutamate and GABA (Sidoryk-Wegrzynowicz
et al., 2009). Furthermore, Mn induces protein kinase C d (PKC-iso-
form d) activation, causing a decrease in glutamine uptake
through two particular systems: SNAT3 and ASCT2 (Sidoryk-
Wegrzynowicz et al., 2010). This process putatively promotes
the initiation of the down-regulation of these transporters in
astrocytes by the ubiquitin-mediated proteolytic system (Sid-
oryk-Wegrzynowicz et al., 2010). PKC activation by Mn exposure
leads to reduced glutamate uptake, and inhibition of PKC reverses
Mn-dependent down-regulation of glutamate influx, as well as in-
creases GLT-1 and GLAST protein level in astrocytes (Sidoryk-
Wegrzynowicz et al., 2011). Transfection of astrocytes with shRNA
against PKCd showed decreased sensitivity to Mn, corroborating
the involvement of the PKCd signaling (Sidoryk-Wegrzynowicz
et al., 2011).
neurodegeneration: A focus on iron, manganese and mercury. Neurochem.
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3.3.4. Interaction with Fe-containing enzymes
It is known that certain proteins have a degree of ‘‘promiscuity’’

in metal binding. However, most of these enzymes are active with
only one metal as cofactor, although both metals can bind in vitro
and in vivo. Fe(II) and Mn(II) bind weakly to most proteins and pos-
sess similar coordination preferences (Cotruvo and Stubbe, 2012).
There are cases where enzymes, such as epimerases, are thought
to use Fe2+ as a Lewis acid under normal growth conditions but
switch to Mn2+ under oxidative stress. Estradiol dioxygenases have
been found to use both Fe2+ and Mn2+ (Farquhar et al., 2011). Nota-
bly, a specific class of I ribonucleotide reductases (RNRs), which
convert nucleotides in deoxynucleotides, have evolved unique bio-
synthetic pathways to control metallation (Stubbe and Cotruvo,
2011). For instance, Fe- and Mn-dependent superoxide dismutases
(SODs) catalyze the disproportionation of superoxide using highly
similar protein scaffolds and nearly identical active sites (Cotruvo
and Stubbe, 2012). Despite the extensive homology between the
isoforms, Mn- and Fe-SODs are only active with their cognate me-
tal (Vance and Miller, 2001). Misincorporation of Fe into Mn-SOD
or vice versa alters the redox potential of the enzyme’s active site
and inhibits superoxide disproportionation (Beyer and Fridovich,
1991). Nevertheless, misincorporation of Fe into Mn-SOD does oc-
cur in vivo, as observed in Escherichia coli (Yang et al., 2006). Using
mitochondria from Saccharomyces cerevisae, Naranuntarat and co-
workers verified that Fe binds to SOD-2 when cells are starved
for Mn, inactivating the enzyme (Naranuntarat et al., 2009).

Furthermore, in vivo chronic Mn exposure in rats receiving
intraperitoneal injection of 6 mg/kg Mn as MnCl2 daily for 30 con-
secutive days led to a region-specific alteration in total aconitase in
frontal cortex, striatum and substantia nigra (Zheng et al., 1998).
Aconitase is an enzyme from the tricarboxylic acid cycle that pos-
sesses an iron–sulfur cluster. When the cellular Fe level is insuffi-
cient, cytoplasmic aconitase loses the fourth labile Fe and assumes
a [3Fe–4S] configuration. In this state, the coordination chemistry
of Mn closely resembles that of Fe, possibly allowing Mn to interact
with Fe in both mitochondrial and cytoplasmic aconitases, thus
altering cellular energy metabolism and Fe regulation (Zheng
et al., 1998). Unzai et al. prepared a series of hybrid hemoglobins
in which Fe from heme was replaced by different metals, Mn in-
cluded, in the a or b subunits. None of the substituted hemoglobins
reacted with dioxygen or carbon monoxide, suggesting that the
putative substitution of Fe by Mn during ferropenic anemia would
impair hemoglobin function (Unzai et al., 1998).
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3.4. Antidotal strategies

It remains controversial as to whether manganism, a Parkinso-
nian-like syndrome, can be treated with levodopa (Lucchini et al.,
2009; Racette et al., 2001). Accordingly, other therapeutic ap-
proaches using drugs and genomic evaluations have been
investigated.

Because oxidative stress plays a crucial role in Mn-induced
neurotoxicity, antioxidant compounds have been of great interest.
It has been demonstrated that synthetic compounds such as organ-
ochalcogens 2-phenyl-1,2-benzisoselenazol-3[2H]-one (ebselen)
and diethyl-2-phenyl-2 tellurophenyl vinylphosphonate (DPTVP)
(Avila et al., 2010; Santos et al., 2012) mitigate Mn-induced neuro-
toxicity. These compounds, which possess strong antioxidant prop-
erties, caused improvement in motor activity in rats and
attenuated Mn-induced brain ROS generation (Avila et al., 2010;
Santos et al., 2012). In the nematode Caenorhabditis elegans, these
compounds protected against Mn-induced oxidative stress,
decreasing ROS levels and increasing the life-span of Mn-exposed
worms (Avila et al., 2012). Another important antioxidant, lyco-
pene, strongly inhibited lipid peroxidation induced by Mn in brain
Please cite this article in press as: Farina, M., et al. Metals, oxidative stress and
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and liver by acting as an efficient chain-breaking antioxidant, trap-
ping lipid radicals (Lebda et al., 2012).

In rodents, anti-inflammatory agents, such as indomethacin and
para-aminosalicilic acid, reduced Mn-induced increase in oxidative
stress (isoprostanes) and neuroinflammation (prostaglandin E2)
(Milatovic et al., 2011; Santos et al., 2012). Notably, indomethacin
protected against progressive spine degeneration and dendritic
damage in striatal medium spiny neurons of mice exposed to Mn
(Milatovic et al., 2011). This protection is probably mediated by
the transcription factor NF-jB (Moreno et al., 2011). Using trans-
genic mice expressing a transcription factor fused to a green fluo-
rescent protein (GFP), Moreno and co-workers showed that Mn
exposure increased NF-jB reporter activity and nitric oxide syn-
thase 2 (NOS2) expression in both microglia and astrocytes, and
that these effects were prevented by supplementation with steroid
17b-estradiol. This steroid is one of the most active estrogen hor-
mones possessing neuroprotective effects in both in vivo and
in vitro models, and it has been shown to enhance astrocytic gluta-
mate transporter function (Liang et al., 2002). Estrogen also de-
creased neuronal protein nitration in treated mice and inhibited
apoptosis in striatal neurons cocultured with Mn-treated astro-
cytes in vitro (Moreno et al., 2011). Furthermore, tamoxifen, an
estrogen related compound, effectively reversed glutamate
transport inhibition in a Mn-induced model of glutamatergic
deregulation, suggesting a potential therapeutic modality in neuro-
degenerative disorders which are characterized by altered gluta-
mate homeostasis (Lee et al., 2012). In agreement with this
study, Xu et al. showed that the pretreatment of rats with the
NMDA (N-methyl-D-aspartate) antagonist MK801 protected neu-
rons from Mn-induced glutamate excitotoxicity (Xu et al., 2010).
Several studies have addressed genetic factors that mediate of
Mn toxicity. Streifel and co-workers used mice lacking NOS, postu-
lating that they would be protected from the neurotoxic effects of
Mn. They found that loss of NOS2 reduced NO-induced peroxyni-
trite formation, thus attenuating Mn-related peroxynitrite adduct
formation in the striatal-pallidum and substantia nigra pars retic-
ulate. These mice showed attenuated alterations in neurobehavior-
al function and neurochemistry in vivo and also loss of NOS2 also
prevented astrocyte-mediated neuronal apoptosis in vitro (Streifel
et al., 2012). In C. elegans, Benedetto et al. observed that Mn-in-
duced DAergic neurotoxicity requires the NADPH dual-oxidase
BLI-3, suggesting that in vivo BLI-3 activity promotes the conver-
sion of extracellular DA into toxic reactive species, which, in turn,
can be taken up by DAT-1 in DAergic neurons, thus leading to oxi-
dative stress and cell degeneration (Benedetto et al., 2010). BLI-3
knockout or inhibition may represent a novel strategy for mitigat-
ing Mn neurotoxicity. Expression of parkin, an E3 ubiquitin ligase
also linked to PD, protects against Mn toxicity, as observed in
SH-SY5Y cells (Roth, 2009). Conversely, deletion of parkin leads
to increase in DMT-1 levels, thus causing increase in Mn uptake
(Roth, 2009). Furthermore, it was reported in yeast that expression
of PARK9, a gene linked to PD, protected cells from Mn toxicity (Gi-
tler et al., 2009).
4. Mercury

4.1. Properties, chemical forms and human exposure

Mercury is a transition metal commonly named quicksilver due
to its liquid and silvery characteristics. It is recognized by the sym-
bol Hg, which comes from the Latin term hydrargyrum, meaning
‘‘watery silver’’. It is present in the environment due to both natu-
ral (earth’s surface evaporation and volcanic eruptions) and
anthropogenic (emissions from coal-burning power stations and
incinerators) sources. As a result of specific reactions (i.e.
neurodegeneration: A focus on iron, manganese and mercury. Neurochem.
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oxidation, methylation), different chemical forms of Hg are pres-
ent, such as elemental mercury (Hg0), inorganic (divalent and
monovalent cationic forms; Hg2+ and Hg+) and organic (i.e. methyl-
mercury; MeHg) mercury compounds. While human exposures to
all environmentally existing forms of Hg have been documented,
exposure to MeHg represents a major concern. Exposures to MeHg,
which is present at high concentrations in seafood diets, are com-
mon and ubiquitous; MeHg has a higher entry rate into the CNS
compared with inorganic mercurials, rendering it an important
neurotoxicant (Aschner et al., 2007b; Debes et al., 2006). Occupa-
tional exposures to Hg (mainly in the form of elemental mercury,
Hg0), due to its use in industry (Neghab et al., 2012) and artisanal
gold mining (Lubick, 2010), are also of toxicological relevance. In
addition, iatrogenic exposures to Hg continue to represent a con-
cern. For example, dental amalgams (important source of Hg0)
are still used (for a review, see Clarkson and Magos, 2006).

The toxic properties and target organs of Hg are dependent
upon its chemical speciation. This review focuses on forms of Hg
with major neurotoxicological relevance: (i) primary focus is direc-
ted at MeHg, which occurs mainly from contaminated seafood; (ii)
because of its efficient transport through the BBB, the neurotoxico-
logical significance of mercury vapor, secondary to exposures from
occupational settings and dental amalgam, is also discussed.

4.2. Transport, metabolism and excretion

4.2.1. Methylmercury
Methylmercury (MeHg; CH3Hg+) is an organic mercury com-

pound found in the aquatic environment (Ullrich et al., 2007).
The majority of MeHg is derived from the methylation of inorganic
mercury, carried out mostly by aquatic microorganisms (Compeau
and Bartha, 1985). MeHg is biomagnified in the aquatic food chain,
reaching concentrations as high as 1 ppm in predatory fish (Hintel-
mann, 2010). Accordingly, populations that rely on fish diets can be
exposed to high MeHg levels (Clarkson et al., 2003). MeHg is well
absorbed by the gastrointestinal tract (around 95%) (Miettinen,
1973). After absorption, more than 90% of MeHg in the blood is
intracellular (bound to erythrocyte hemoglobin); the fraction pres-
ent in the blood is about 6%, upon complete equilibrium between
blood and tissues is reached (Kershaw et al., 1980). In humans or-
ally exposed to MeHg, the percentage (of total) of inorganic Hg in
the blood, breast milk and urine is 7%, 39% and 73%, respectively
(IPCS, 1990), suggesting that inorganic Hg is an important excret-
able metabolite of MeHg. Additionally, experimental evidence
shows that MeHg can also be excreted via the biliary route, likely
complexed to glutathione (GSH), as a GSH mercaptide (CH3Hg-
SG) (Ballatori et al., 1995).

The CNS represents the main target organ of MeHg toxicity
reflecting its efficient transport into the brain. MeHg transport
across the BBB, as well as its uptake by neural cells, occurs via a
MeHg-L-cysteine complex, which is transported by the L-type neu-
tral amino acid transporter (Kerper et al., 1992; Yin et al., 2008b).
Of note, a high percentage of inorganic Hg (above 80%) was found
in the brain of a 30 year old individual who was exposed to MeHg
at 8 years of age (22 years before) (Davis et al., 1994). Neurohisto-
logical outcomes were cortical atrophy, neuronal loss and gliosis,
most pronounced in the paracentral and parietooccipital regions.
Before death, the most evident neurological signs were cortical
blindness, diminished hand proprioception, choreoathetosis, and
attention deficits. In this patient, the total Hg level (more that
80% as inorganic Hg) in the left occipital cortex was more that
50-fold the levels found in control individuals (Davis et al.,
1994), indicating a high persistence of Hg in the brain after MeHg
exposure. Although MeHg is well recognized as a neurotoxicant by
acting at specific biomolecular sites (for a review, see Farina et al.,
2011a,b), the dealkylation of MeHg into inorganic Hg likely ac-
Please cite this article in press as: Farina, M., et al. Metals, oxidative stress and
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counts for Hg’s persistence in the brain, and potentially long-last-
ing neurological outcomes (Grandjean et al., 1997a; Ninomiya
et al., 2005).

MeHg is transferred from the pregnant mother to the fetus,
reaching the fetal brain. In an experimental study where pregnant
mice were directly exposed to MeHg, Watanabe and collaborators
(1999) detected higher levels of the metal in the fetuses brain
when compared to the dams, indicating a high transplacental
transport of MeHg, as well as a great retention in the fetus brain.
MeHg seems to be actively transported from the maternal to the
fetal blood as its cysteine conjugate via the neutral amino acid car-
rier system (Kajiwara et al., 1996). Its high entry in the developing
brain is related, at least in part, to the lack of functional BBB (Costa
et al., 2004; Manfroi et al., 2004).

There are epidemiological studies showing that maternal expo-
sure to MeHg during pregnancy causes neurological deficits in
their offspring (Grandjean et al., 1997b; Murata et al., 2004). Inter-
estingly, exposure to MeHg during early fetal development is
linked to subtle brain injury at levels much lower than those affect-
ing the mature brain (Grandjean and Landrigan, 2006), most likely
because it affects cell differentiation, migration and synaptogene-
sis (Theunissen et al., 2011; Zimmer et al., 2011).

4.2.2. Mercury vapor
The major sources of elemental mercury vapor (Hg0) exposure

are occupational and dental amalgams. Hg0 is still used in industry
in the production of caustic soda and chlorine, and in the manufac-
ture of thermometers, thermostats, fluorescent light bulbs, batter-
ies and manometers (for a review, see Clarkson and Magos, 2006).
Artisanal miners are also exposed to Hg0 by inhaling vapors when
they burn off the Hg that is used to amalgamate gold (Lubick,
2010). Dental amalgams have also been reported as an important
source of Hg0 (Hursh et al., 1976), although it may also be ingested
in a particulate form.

Once absorbed (mainly through the respiratory tract), Hg0 is
oxidized mainly by erythrocyte catalase to mercurous (Hg+) and
mercuric (Hg2+) ions, which are toxic to several organs (particu-
larly the kidneys), but have limited access to the CNS. Conversely,
a certain amount of blood Hg0 (not oxidized by blood catalase)
passes through the BBB, reaching the CNS. Data on the distribution
of brain Hg after Hg0 exposure are scarce. In an experimental study
with squirrel monkeys, the profile of distribution was not homoge-
neous within the different encephalic structures; Hg was found in
both glial cells and neurons mainly in the cortical areas and in the
fiber systems (Warfvinge et al., 1994). After Hg0 exposure in man,
urine and feces are the main pathways of Hg excretion (Tejning
and Ohman, 1966). Because of the fast oxidation of Hg0 into
Hg2+, the mercury excreted in feces is probably in the form of mer-
curic mercury (for a detailed review on Hg0 toxicokinetics, see
Clarkson and Magos, 2006).

Although Hg0 exposure can cause toxicity to several organs
(Clarkson and Magos, 2006; Goldwater, 1972), neurotoxicological
signs are prevalent. In humans, common symptoms observed after
occupational exposure to Hg0 include decreased strength and coor-
dination, and increased tremor (Albers et al., 1988). Corroborating
these findings, experimental data have reported motor-related
neurological impairments in monkeys (Newland et al., 1996) and
mice exposed to Hg0 (Yoshida et al., 2005).

4.3. Mercury and neurodegeneration

4.3.1. Methylmercury
Although not completely understood, the molecular mecha-

nisms mediating MeHg-induced neurotoxicity and neurodegenera-
tion are better known when compared with those of elemental Hg.
Because MeHg is a monoalkylmercurial, its Hg atom is a monocation
neurodegeneration: A focus on iron, manganese and mercury. Neurochem.
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(CH3-Hg+), which possess electrophilic properties. As an electro-
philic compound, MeHg interacts with and oxidizes nucleophilic
groups of several biomolecules; sulfhydryl (thiol/thiolate; –SH/–
S�) groups are important and relevant targets of MeHg in the biolog-
ical systems. Accordingly, the interactions of MeHg with sulfhydryl-
containing proteins (i.e. neurotransmitter receptors, transporters,
antioxidant enzymes, etc.), as well as with nonprotein thiols (i.e.
glutathione, cysteine), are crucial events in mediating its neurotox-
icity (Clarkson et al., 2003; Sumi, 2008). By direct interaction with
thiols, as well as indirect mechanisms (discussed latter), MeHg
can modify the oxidation state of the –SH groups on proteins, mod-
ulating their functions (Kim et al., 2002). Consequently, the activi-
ties of several –SH-containing proteins whose roles are decisive
for proper homeostasis of neuronal and glial cells [i.e. creatine ki-
nase (Glaser et al., 2010), GSH reductase (Stringari et al., 2008),
Ca2+-ATPase (Freitas et al., 1996), thioredoxin reductase (Branco
et al., 2012), choline acetyltransferase and enolase (Kung et al.,
1987)] are perturbed after MeHg exposure. Altered protein function
has been posited as a causative factor in MeHg-induced neurotox-
icity and neurodegeneration (Farina et al., 2012, 2011b).

In addition to –SH-containing proteins, nonprotein thiols (rep-
resented mainly by GSH, the major low-molecular-weight thiol)
are also important molecular targets involved in MeHg-induced
neurotoxicity. Knowledge on the direct chemical interaction be-
tween MeHg and GSH, as well as its importance in mercurial tox-
icity, dates several decades (Neville and Drakenberg, 1974). Such
an interaction affects the deposition of MeHg in tissues (Richard-
son and Murphy, 1975) and modifies Hg excretion in the bile of
MeHg-exposed rats (Osawa and Magos, 1974), indicating that this
low-molecular-weight thiol compound modulates its toxicity.
Based on these observations (Neville and Drakenberg, 1974; Osawa
and Magos, 1974; Richardson and Murphy, 1975), studies on the
toxicological relevance of MeHg � GSH interaction have shown
that strategies to increase GSH levels are protective against
MeHg-induced neurotoxicity (Kaur et al., 2006, 2011; Shanker
et al., 2005). Moreover, several in vitro studies with isolated organ-
elles or cultured cells (Franco et al., 2007; Ni et al., 2011), as well as
in vivo studies in mice (Franco et al., 2006; Stringari et al., 2008),
have shown that MeHg exposure causes GSH depletion. Because
of the crucial role of GSH in maintaining redox homeostasis (Drin-
gen et al., 2005), several aspects of MeHg-induced neurotoxicity
have been ascribed to GSH depletion (for a review, see Farina
et al., 2011a).

Based on the direct chemical interaction between GSH and
MeHg, GSH depletion upon MeHg exposure (Franco et al., 2006;
Stringari et al., 2008) represents an expected phenomenon. How-
ever, intracellular GSH concentrations in the mammalian cerebrum
and cerebellum are in the millimolar (mM) range. Because de-
creased GSH levels have been reported in the cortices (cerebral
and cerebellar) of MeHg-exposed animals whose cortical mercury
levels were in the low micromolar (lM) range (Franco et al.,
2006; Stringari et al., 2008), it is reasonable to assume that the
simple MeHg–GSH interaction is not the only cause of MeHg-in-
duced GSH oxidation. MeHg seems to induce the formation of
ROS by GSH-independent mechanisms as well, leading to subse-
quent GSH oxidation (Franco et al., 2007; Mori et al., 2007). This
event seems to be also important in terms of protein oxidation,
where ROS generated from MeHg can modulate the redox state
of proteins, thus affecting their function. A classical example of
such phenomenon was described by Allen et al. (2001), who
showed that MeHg induces the generation of hydrogen peroxide
(a common endogenous ROS), which down regulates the activity
of astrocytic glutamate transporters, culminating in excitotoxicity
(Lockman et al., 2001).

In addition to –SH groups (from both protein and low-molecu-
lar weight sources), selenohydryl (selenol/selenolate; –SeH/–Se�)
Please cite this article in press as: Farina, M., et al. Metals, oxidative stress and
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groups have also been reported as important targets mediating
MeHg-induced neurotoxicity/neurodegeneration. From a molecu-
lar point of view, it is important to note that selenols are more
nucleophilic than thiols, which could render selenoproteins prefer-
ential molecular targets of MeHg compared with –SH-containing
proteins (Farina et al., 2012). Accordingly, a recent and growing
body of evidence points to selenoproteins, such as GSH peroxidase
and thioredoxin reductase, as critical and primary targets in medi-
ating MeHg-induced neurotoxicity (Branco et al., 2012; Carvalho
et al., 2008; Farina et al., 2009; Franco et al., 2009; Usuki et al.,
2011). This is based on the higher affinity of Hg for selenols com-
pared with thiols (Sugiura et al., 1976). Such affinity allows for
the transference of MeHg from a thiol to a selenol biomolecule
(MeHg–SR + RSeH)MeHg–SeR + RSH). This higher affinity of Hg
for selenols also renders the selenium–mercury linkage relatively
stable, even in the presence of high (i.e. mM) thiol concentrations.
In agreement, nM concentrations of MeHg significantly decreased
the activity of the selenoprotein GSH peroxidase-1 in cultured neu-
rons (Farina et al., 2009), whose cytosolic GSH concentrations are
in the mM range.

Based on the aforementioned, it is reasonable to assume that
any selenoprotein can represent a potential molecular target for
MeHg. Interestingly, GSH peroxidase-1 (Farina et al., 2009; Franco
et al., 2009), GSH peroxidase-4 (Zemolin et al., 2012), thioredoxin
reductase (Branco et al., 2012; Wagner et al., 2010), selenoprotein
W (Kim et al., 2005) and 50-deiodinase (Watanabe et al., 2007) are
examples of selenoproteins whose activities were down-regulated
by MeHg. Because of the crucial role of such selenoproteins in the
maintenance of the cellular homeostasis (Lu and Holmgren, 2009),
one might posit that the selenium–mercury interaction plays a piv-
otal role in MeHg-induced neurodegeneration. Although the com-
plete understanding on this scheme has yet to be resolved, this
hypothesis is reinforced by the fact that inorganic and organic sele-
nium compounds mitigate MeHg-induced neurotoxicity (Farina
et al., 2003a; Glaser et al., 2010; Kaur et al., 2009; Yin et al., 2011).

As already mentioned, the neurotoxicity induced by MeHg is re-
lated, at least in part, to changes in the redox state of nucleophilic
groups (mainly thiols and selenols) from protein sources. These
changes are likely responsible for two important events that occur
in the CNS of MeHg-exposed animals, namely, oxidative stress (re-
viewed by Farina et al., 2011a) and glutamate dyshomeostasis (see
below). From a mechanistic point of view, the altered redox state
may represent a consequence of the direct interaction of the nucle-
ophilic groups with MeHg, as well as a resultant from the pro-oxida-
tive effects of ROS generated during MeHg exposure. Table 1 depicts
several enzymes, transporters and receptors (most of them are sulf-
hydryl- or selenohydryl-containing proteins) as potential molecular
targets of MeHg-induced neurotoxicity/neurodegeneration.

An established event in MeHg-induced neurotoxicity, which
seems to result from the primary interaction of the electrophilic
toxicant with nucleophilic groups, is glutamate dyshomeostasis
(reviewed by Aschner et al., 2007b). Glutamate is the most impor-
tant excitatory neurotransmitter in the mammalian CNS, serving
crucial roles on development, learning, memory and response to
injury (Fonnum, 1984). Due to its direct and indirect pro-oxidative
properties, MeHg increases extracellular glutamate levels, which
result from both inhibition of glutamate uptake (Aschner et al.,
2000; Brookes and Kristt, 1989) and stimulation of its release into
the synaptic cleft (Reynolds and Racz, 1987), culminating in excito-
toxic events (Aschner et al., 2007b). Over-activation of the NMDA
subtype glutamate receptors leads to an increased Na+ and Ca2+ in-
flux, which is associated with the generation of oxidative stress
and neurotoxicity (Lafon-Cazal et al., 1993). Indeed, glutamate-
mediated increased intracellular Ca2+ concentrations leads to in-
creased nitric oxide production (due to activation of neuronal nitric
oxide synthase), as well as to mitochondrial collapse (Farina et al.,
neurodegeneration: A focus on iron, manganese and mercury. Neurochem.
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Table 1
Potential proteins mediating MeHg-induced neurotoxicity.

Protein Effect Functions References

3-Ketoacid-coenzyme A
transferase I

+⁄ Ketone body metabolism Vendrell et al. (2007)

50-Deiodinase +# Thyroid hormone metabolism Watanabe et al. (2007)
ASC cysteine transporter +# Cysteine uptake Shanker et al. (2001)
Astrocytic glutamine

transporter
+# Glutamine uptake from synaptic cleft Yin et al. (2011)

Choline acetyl transferase +# Acetylcholine synthesis Kung et al. (1987)
Creatine kinase +# Energetic metabolism Glaser et al. (2010)
Cytosolic phospholipase A2 *#⁄ Hydrolysis of membrane phospholipids (arachidonic acid

releasing)
Shanker et al. (2004)

Enolase +# Glycolitic pathway Kung et al. (1987)
Glutamate transporters +# Glutamate uptake Aschner et al. (1990), Manfroi et al. (2004) and Farina et al.

(2003a)
Glutathione peroxidase 1 +# Peroxide detoxification Farina et al. (2009)
Glutathione peroxidase 4 +#⁄ Peroxide detoxification Zamolin et al. (2012)
Glutathione reductase +*# Reduction of GSSG to GSH Farina et al. (2005) and Stringari et al. (2008)
Monoamine oxidase +# Dopamine, serotonin, and noradrenaline metabolism Beyrouty et al. (2006)
Nitric oxide synthase *# Nitric oxide synthesis Herculano et al. (2006)
Nrf2 transcription factor *⁄ Modulation of antioxidant and phase 2 enzyme expression Ni et al. (2011)
Phosphorylated-cofilin +⁄ Reorganization of actin filaments Vendrell et al. (2010)
Non-phosphorylated-cofilin *⁄
Selenoprotein W +⁄ Not well-identified (antioxidant, response to stress,

immunity)
Kim et al. (2005)

Thioredoxin reductase +# Reduction of thioredoxin (antioxidant effect) Wagner et al. (2010) and Branco et al. (2012)
X(AG(-)) cysteine transporter +# Cysteine uptake Shanker et al. (2001)

In vitro and in vivo experimental evidences indicate that the activities of several proteins (from neuronal, astrocytic and/or microglial source) are modulated after MeHg
exposure, suggesting their role in MeHg-neurotoxicity. The arrows * or + mean positive or negative modulator effects, respectively. # indicates that the variable was
measured at functional level (i.e. enzyme activity, transporter activity). ⁄ indicates that the variable was measured at expression level (protein or mRNA).
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2011a). Notably, MeHg-induced Ca2+ and glutamate dyshomeosta-
sis, as well as MeHg-induced ROS generation (oxidative stress), are
events that contribute independently to neurotoxicity, but also
represent inter-connected phenomena affecting each other. Fig. 4
depicts the relationship between glutamate and calcium dysho-
meostasis and oxidative stress in MeHg-mediating neurotoxicity.

An interesting aspect of MeHg neurotoxicology is its preferen-
tial affinity for specific regions/structures of the CNS, leading to
particular histological and behavioral characteristics. Pathological
analyses of MeHg-poisoned adult individuals from the Minamata
Bay, Japan (where the major MeHg outbreak took place), showed
that this mercurial does not uniformly affect the nervous system;
commonly, the cerebral and cerebellar cortices are the regions
more severely affected (Eto et al., 2010). Indeed, in adult Minamata
patients, a significant neurodegeneration has been observed
mainly in calcarine, temporal, pre- and postcentral cortices, as well
as in the cerebellar hemispheres (Eto et al., 2010). These patholog-
ical observations are in agreement with the symptoms observed in
Minamata disease patients, characterized by cerebellar ataxia, con-
centric constriction of their visual fields, and sensory disturbances
(Uchino et al., 1995). Experimental studies with MeHg-exposed
animals have also pointed to the cerebral and cerebellar cortices
as preferential encephalic structures subjected to MeHg-neurode-
generation; moreover, similar symptoms (visual, motor and sen-
sory disturbances) have been observed (Carvalho et al., 2007;
Charleston et al., 1995; Dietrich et al., 2005).

The neurodegeneration detected in the cerebral and cerebellar
cortices of Minamata patients and MeHg-exposed animals (Carv-
alho et al., 2007; Eto et al., 2010) is likely consequence of a relative
short-term high dose exposure to this mercurial. However, it is
noteworthy that fishing communities are commonly exposed to
chronic low-dose exposures (Clarkson et al., 2003), which probably
induce a more subtle (maybe ‘‘undetectable’’) pattern of neurode-
generation/neurotoxicity. Human health concerns associated with
these chronic exposures are of particular relevance taking into ac-
count (i) the absence of a factual non-observed adverse effect level
(NOAEL) in terms of MeHg-induced neurotoxicity (mainly with re-
Please cite this article in press as: Farina, M., et al. Metals, oxidative stress and
Int. (2012), http://dx.doi.org/10.1016/j.neuint.2012.12.006
spect to developmental toxicity) and (ii) the potential occurrence
of a dangerous but silent pandemic of subclinical MeHg neurotox-
icity (Grandjean and Landrigan, 2006).

4.3.2. Mercury vapor (elemental mercury)
Data on the molecular mechanisms mediating elemental mer-

cury (Hg0)-induced neurotoxicity/neurodegeneration are scarce
compared with those on MeHg. Hg0 (in contrast to MeHg) causes
general toxicity in several tissues, such as lung, kidney and gastro-
intestinal tract, among others (Goldwater, 1972; Magos, 1967). In-
deed, as previously mentioned, most of the absorbed Hg0 is
oxidized in the blood to Hg2+, and subsequently targets several or-
gans. However, a certain amount of blood Hg0 (not oxidized to Hg2+)
passes through the BBB prior to this oxidation step, thus reaching
the CNS. Of note, it is believed that the mercuric ion Hg2+ (generated
within the CNS from Hg0 oxidation) is the proximate toxic chemical
form because mercury vapor itself is unable to react with tissue li-
gands. Consequently, the oxidation of Hg0 to Hg2+ (in both blood
and CNS) seems to be an important determinant on the degree
and pattern of the toxic effects of Hg0 (Magos, 1967).

From a mechanistic point of view, it is important to note that
Hg2+ (generated from Hg0 oxidation within the CNS) binds to –
SH-containing ligands (Aschner and Aschner, 1990); this event
likely dictates the neurotoxicity observed after Hg0 exposure. In
agreement, an experimental study in Hg0-exposed mice showed
higher susceptibility to Hg0-induced behavioral changes in metal-
lothionein (MT)-null compared with wild type animals (Yoshida
et al., 2005). Based on the high affinity of Hg2+ for thiols, as well
as on the fact that MTs are cysteine-rich intracellular proteins with
great affinity for divalent metals, the results by Yoshida et al.
(2005) indicate that the interaction of Hg2+ (derived from Hg0)
with –SH-containing ligands in the CNS likely represents an impor-
tant event mediating toxicity.

In vitro studies aimed on Hg0-induced neurotoxicity have been
carried out with Hg2+ (Albrecht and Matyja, 1996; Brookes and
Kristt, 1989), as a surrogate of Hg0 since the latter is rapidly
biotransformed to Hg2+. Cell culture-based studies (Brookes and
neurodegeneration: A focus on iron, manganese and mercury. Neurochem.
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Fig. 4. MeHg-induced glutamate and calcium dyshomeostasis and oxidative stress. MeHg causes increased extracellular glutamate (GLU) levels via the inhibition of astrocytic
glutamateuptake (event 1) and the stimulation of glutamate release from pre-synaptic terminals (event 2). Increased extracellular glutamate levels overactivate N-methyl D-
aspartate (NMDA)-type glutamate receptors, increasing calcium influx into neurons (event 3). Increased levels of intracellular calcium, which can lead to mitochondrial
collapse (event 4), activate neuronal nitric oxide synthase (nNOS) (event 5), thus increasing nitric oxide (NO) formation. MeHg affects the mitochondrial electron transfer
chain (mainly at the level of complexes II–III) (event 6), leading to increased formation of reactive oxygen species [ROS; superoxide anion (O��2 ) and hydrogen peroxide
(H2O2)]. H2O2 can inhibit astrocyte glutamate transporters (event 7), contributing to the excitotoxic cycle. O��2 reacts with NO (event 8), generating peroxynitrite (ONOO�), a
highly oxidative molecule. Adapted from Farina et al., 2011a.
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Kristt, 1989) pointed to glutamate dyshomeostasis as a critical event
mediating Hg2+-induced toxicity. In fact, sub-lM concentrations of
Hg2+ inhibited the clearance of extracellular glutamate both in
astrocyte and spinal cord cultures, and reduced glutamine content
and export in astrocyte cultures (Brookes and Kristt, 1989), indicat-
ing that Hg2+-induced neurotoxicity might be mediated by excito-
toxic events. In agreement, Albrecht and Matyja (1996) not only
observed decreased glutamate uptake, but also increased glutamate
release in Hg2+-exposed cultured astrocytes, reinforcing the idea
that Hg0/Hg2+-neurotoxicity may be mediated by excitotoxic activ-
ity of glutamate (Albrecht and Matyja, 1996). Interestingly, this
study also reported that the inhibition of glutamate uptake was
attenuated by addition to the cultures of a cell membrane-penetrat-
ing agent dithiothreitol (a dithiol agent), but not of GSH, which is not
transported into the cells. These results reinforce that the intracellu-
lar thiol status is likely responsible for the effects of Hg2+ in mediat-
ing astrocyte glutamate dyshomeostasis. This hypothesis is
reinforced by the fact that the activity of astrocyte glutamate trans-
porters is sensitive to thiol agents (Volterra et al., 1994).

Although data on the mechanisms mediating Hg0-neurotoxicity
are scarce, existing evidence suggests that changes in the redox
state of –SH-containing proteins plays a critical role (Albrecht
and Matyja, 1996; Aschner and Aschner, 1990; Brookes and Kristt,
1989; Yoshida et al., 2005). However, based on the high affinity of
Hg2+ (herein, derived from Hg0) for selenols, it is reasonable to sug-
gest that selenoproteins could also mediate the neurotoxic effects
observed after Hg0 exposure. This idea is based on the higher affin-
ity of Hg2+ for selenols compared with thiols (Sasakura and Suzuki,
1998). Carvalho and coworkers (2008) observed that the seleno-
protein thioredoxin reductase (TrxR) is selectively inhibited by
Hg2+ and concluded that the significant potency of the mercurial
to bind to the selenol group in the active site of TrxR represents
a major molecular mechanism of its toxicity. Because of the prob-
able interaction between Hg2+ (derived from Hg0) and selenols in
the CNS, the potential involvement of selenoproteins in the neuro-
toxicity elicited by Hg0 represents an important research field that
deserves further attention. This is believed because (i) Hg2+ toxicity
is antagonized by selenium compounds (Farina et al., 2003b;
Please cite this article in press as: Farina, M., et al. Metals, oxidative stress and
Int. (2012), http://dx.doi.org/10.1016/j.neuint.2012.12.006
Yamamoto, 1985), (ii) Hg2+, which is generated in the SNC after
Hg0 oxidation, inhibits the activity of selenoproteins by interacting
with their selenol group (Carvalho et al., 2008), and (iii) miners
occupationally exposed to Hg0 had lower levels of plasma selenium
when compared with control individuals (Kobal et al., 2004).

4.4. Antidotal strategies

Several compounds have been reported to protect against Hg
toxicity in experimental in vitro and in vivo models. Vitamin E
(Shichiri et al., 2007), thiol compounds (Falluel-Morel et al.,
2012; Koh et al., 2002), natural products (Farina et al., 2005; Franco
et al., 2010; Lapina et al., 2000; Lucena et al., 2007), vitamin K (Sak-
aue et al., 2011), chelating agents (Carvalho et al., 2007), Ca2+-
channel blockers and glutamatergic antagonists (Ramanathan
and Atchison, 2011), among others, have shown beneficial effects
against mercurial toxicity. Although the aforementioned protective
effects have been observed under experimental conditions, unfor-
tunately, the clinical practice with Hg-exposed humans has shown
the absence of an effective treatment that completely abolishes the
toxic effects. In such cases, supportive care is given when necessary
to maintain vital functions and the administration of chelator
agents is performed in an attempt to assist the body’s ability to
eliminate Hg from the tissues. However, these drugs have limited
use because of incomplete efficacies in removing Hg from tissues
and significant adverse side effects (Tchounwou et al., 2003).

A rapid antidotal intervention is required in high-dose acute
exposures, which are commonly observed after occupational or
intentional exposures to Hg0 (Bluhm et al., 1992; De Palma et al.,
2008; Eyer et al., 2006). Different chelating agents, including pen-
icillamine, dimercaprol, 2,3-dimercaptopropane-1-sulphonate
(DMPS), and meso-2,3-dimercaptosuccinic acid (DMSA), have been
administered in these cases (Eyer et al., 2006; Houeto et al., 1994);
however, the desired beneficial results are generally not achieved.
In fact, even though urinary Hg excretion could be significantly en-
hanced during chelation therapy, its efficacy on the disappearance
of tissue Hg deposits seems to be negligible (Lin and Lim, 1993;
Rodrigues et al., 1986).
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Chelating therapy can also increase Hg excretion after MeHg
exposure, which suggests its beneficial use as antidotal strategy
for MeHg poisoning. Clarkson et al. (1981) studied the effects of
three chelating agents (DMPS, D-penicillamine and N-acetyl-DL-
penicillamine) and a thiolated resin in reducing the blood half-life
(T1/2) of MeHg during an outbreak of human poisoning. All four
treatments significantly reduced the mean T1/2 compared with pla-
cebo; DMPS was the most effective agent. Another study with
healthy individuals showed that oral DMSA treatment produced
a rise in urine Hg excretion of fish eaters; although a similar in-
crease in renal Hg excretion was observed in non-fish eaters (Ruha
et al., 2009). Existing evidence concerning the use of chelating
therapy in MeHg poisoning indicates that chelators can remove
MeHg from the body, but cannot reverse the damage to the CNS
(Clarkson et al., 2003). This aspect is particularly important when
considering the most common pattern of human MeHg exposure
(low-dose/long-term exposures), which is observed in fish-eating
populations. The relative short-term high-dose MeHg poisonings,
such as those observed during the well known outbreaks in Mina-
mata Bay (Harada, 1978) and Iraq (Bakir et al., 1973), do not repre-
sent the common profile of human MeHg poisoning. In fact, human
exposures to MeHg in fishing communities generally occur over
extended periods (months or years) due to long-term seafood in-
take. Thus, massive short-term MeHg exposures are not frequent
and, consequently, antidotal clinical interventions (i.e. chelating
therapy) are not usually necessary (and useful) in such cases. In
fact, it is believed that the neurological impairments observed in
humans chronically exposed to MeHg due to the ingestion of con-
taminated fish might not necessarily correlate with the Hg levels
present in tissues. In line with this, an experimental study on the
developmental exposure of mice to MeHg showed that cerebral
biochemical parameters affected by MeHg exposure (i.e. lipid per-
oxidation, GSH levels, GPx and GR activities) remained changed in
the MeHg-exposed animals even when the cerebral Hg concentra-
tion decreased to basal levels (Stringari et al., 2008). These results
indicated the persistence of MeHg-induced cerebral biochemical
changes even when the cerebral concentrations of the toxicant
were undetectable, suggesting an enduring toxic mark. Such exper-
imental observation (Stringari et al., 2008) appears to be closely re-
lated to permanent functional deficits observed at 14 years after
prenatal MeHg exposure (Debes et al., 2006), where chelating ther-
apy would probably have no beneficial effect.

There is a consensus that chelating therapy can significantly in-
crease Hg excretion, at least in some specific cases (Bluhm et al.,
1992; Clarkson et al., 1981; De Palma et al., 2008; Eyer et al.,
2006). Of note, chelating therapy is greatly based on –SH-contain-
ing molecules, such as D-penicillamine, N-acetyl-DL-penicillamine,
dimercaprol, DMPS, and DMSA. Based on the higher affinity of Hg
for selenols when compared with thiols, one could ask: ‘‘why sele-
nocompounds are not used as potential chelating agents for human
Hg poisoning’’? To the best of our knowledge, there is no data on
the potential antidotal effects of selenocompounds against Hg tox-
icity in humans. However, experimental evidence indicates that or-
ganic selenocompounds not only protect against mercurials’
toxicity (Farina et al., 2003a; Moretto et al., 2005; Yin et al.,
2011), but also decrease Hg deposition in tissues (de Freitas
et al., 2009). A comparative study on the effectiveness of thiol-
and selenol-based compounds in reversing mercurial toxicity and
in increasing Hg excretion is warranted.
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5. Concluding remarks

Metals are constantly present in our lives, as we ingest essential
metals in food and as we are exposed to them in the air dust or in
contaminated water or food. Interest in the toxicity of essential
Please cite this article in press as: Farina, M., et al. Metals, oxidative stress and
Int. (2012), http://dx.doi.org/10.1016/j.neuint.2012.12.006
trace metals has evolved from the need for government regulatory
agencies such as the United States Environmental Protection
Agency (EPA) to set environmental standards for these metals, as
well as classic toxic metals such as Hg. The metals discussed in this
review can be readily absorbed from different sources, and reach
the CNS thus affecting neurons and glial cells. The mechanisms
of toxicity are still not clearly understood; however their clinical
features are well described and remain of great concern. Under-
standing these mechanisms is essential in designing novel thera-
peutic approaches, including antioxidants with diverse modes of
action. In fact, the efficacy of antioxidants as potential therapeutic
agents against Fe, Mn and Hg highlights oxidative stress as a uni-
fying feature in their neurotoxic effect. However, the primary
events triggered by these metals are mediated via distinct molec-
ular targets. A better understanding of these mechanisms will as-
sist in the development of multifactorial approaches to blunt or
delay the progression of disease.
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